Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38137915

RESUMO

A hydatidiform mole (HM) or molar pregnancy is the most common benign form of gestational trophoblastic disease characterized by a proliferation of the trophoblastic epithelium and villous edema. Hydatidiform moles are classified into two forms: complete and partial hydatidiform moles. These two types of HM present morphologic, histopathologic and cytogenetic differences. Usually, hydatidiform moles are a unique event, but some women present a recurrent form of complete hydatidiform moles that can be sporadic or familial. The appearance of hydatidiform moles is correlated with some genetic events (like uniparental disomy, triploidy or diandry) specific to meiosis and is the first step of embryo development. The familial forms are determined by variants in some genes, with NLRP7 and KHDC3L being the most important ones. The identification of different types of hydatidiform moles and their subsequent mechanisms is important to calculate the recurrence risk and estimate the method of progression to a malign form. This review synthesizes the heterogeneous mechanisms and their implications in genetic counseling.

2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298158

RESUMO

The diagnosis and management of fragile X syndrome (FXS) have significantly improved in the last three decades, although the current diagnostic techniques are not yet able to precisely identify the number of repeats, methylation status, level of mosaicism, and/or the presence of AGG interruptions. A high number of repeats (>200) in the fragile X messenger ribonucleoprotein 1 gene (FMR1) results in hypermethylation of promoter and gene silencing. The actual molecular diagnosis is performed using a Southern blot, TP-PCR (Triplet-Repeat PCR), MS-PCR (Methylation-Specific PCR), and MS-MLPA (Methylation-Specific MLPA) with some limitations, with multiple assays being necessary to completely characterise a patient with FXS. The actual gold standard diagnosis uses Southern blot; however, it cannot accurately characterise all cases. Optical genome mapping is a new technology that has also been developed to approach the diagnosis of fragile X syndrome. Long-range sequencing represented by PacBio and Oxford Nanopore has the potential to replace the actual diagnosis and offers a complete characterization of molecular profiles in a single test. The new technologies have improved the diagnosis of fragile X syndrome and revealed unknown aberrations, but they are a long way from being used routinely in clinical practice.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Metilação de DNA , Inativação Gênica , Repetições de Trinucleotídeos , Alelos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Mutação
3.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978905

RESUMO

Mitochondria are subcellular organelles involved in essential cellular functions, including cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders (diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight the genetic changes identified at the mtDNA level. Additionally, we selected several representative biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.

4.
Genes (Basel) ; 14(2)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36833393

RESUMO

2q37 microdeletion/deletion syndrome (2q37DS) is one of the most common subtelomeric deletion disorders, caused by a 2q37 deletion of variable size. The syndrome is characterized by a broad and diverse spectrum of clinical findings: characteristic facial dysmorphism, developmental delay/intellectual disability (ID), brachydactyly type E, short stature, obesity, hypotonia in infancy, and abnormal behavior with autism spectrum disorder. Although numerous cases have been described so far, the exact mapping of the genotype and phenotype have not yet been achieved. MATERIALS AND METHODS: In this study we analyzed nine newly diagnosed cases with 2q37 deletion (3 male/6 female, aged between 2 and 30 years old), and followed up at the Iasi Regional Medical Genetics Centre. All patients were tested first with MLPA using combined kits P036/P070 subtelomeric screening mix and follow-up mix P264; after, the deletion size and location were confirmed via CGH-array. We compared our findings with the data of other cases reported in the literature. RESULTS: From nine cases, four had pure 2q37 deletions of variable sizes, and five presented deletion/duplication rearrangements (with chromosomes 2q, 9q, and 11p). In most cases, characteristic phenotypic aspects were observed: 9/9 facial dysmorphism, 8/9 global developmental delay and ID, 6/9 hypotonia, 5/9 behavior disorders, and 8/9 skeletal anomalies-especially brachydactyly type E. Two cases had obesity, one case had craniosynostosis, and four had heart defects. Other features found in our cases included translucent skin and telangiectasias (6/9), and a hump of fat on the upper thorax (5/9). CONCLUSIONS: Our study enriches the literature data by describing new clinical features associated with 2q37 deletion, and possible genotype-phenotype correlations.


Assuntos
Transtorno do Espectro Autista , Braquidactilia , Deficiência Intelectual , Humanos , Masculino , Feminino , Braquidactilia/diagnóstico , Braquidactilia/genética , Hipotonia Muscular , Estudos de Associação Genética , Deficiência Intelectual/genética , Obesidade
5.
Antioxidants (Basel) ; 11(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290763

RESUMO

Parkinson's disease (PD) is an enigmatic neurodegenerative disorder that is currently the subject of extensive research approaches aiming at deepening the understanding of its etiopathophysiology. Recent data suggest that distinct compounds used either as anticonvulsants or agents usually used as dopaminergic agonists or supplements consisting of live active lactic acid bacteria strains might alleviate and improve PD-related phenotypes. This is why we aimed to elucidate how the administration of rotenone (ROT) disrupts homeostasis and the possible neuroactive potential of valproic acid (VPA), antiparkinsonian agents (levodopa and carbidopa - LEV+CARB), and a mixture of six Lactobacillus and three Bifidobacterium species (PROBIO) might re-establish the optimal internal parameters. ROT causes significant changes in the central nervous system (CNS), notably reduced neurogenesis and angiogenesis, by triggering apoptosis, reflected by the increased expression of PARKIN and PINK1 gene(s), low brain dopamine (DA) levels, and as opposed to LRRK2 and SNCA compared with healthy zebrafish. VPA, LEV/CARB, and PROBIO sustain neurogenesis and angiogenesis, manifesting a neuroprotective role in diminishing the effect of ROT in zebrafish. Interestingly, none of the tested compounds influenced oxidative stress (OS), as reflected by the level of malondialdehyde (MDA) level and superoxide dismutase (SOD) enzymatic activity revealed in non-ROT-exposed zebrafish. Overall, the selected concentrations were enough to trigger particular behavioral patterns as reflected by our parameters of interest (swimming distance (mm), velocity (mm/s), and freezing episodes (s)), but sequential testing is mandatory to decipher whether they exert an inhibitory role following ROT exposure. In this way, we further offer data into how ROT may trigger a PD-related phenotype and the possible beneficial role of VPA, LEV+CARB, and PROBIO in re-establishing homeostasis in Danio rerio.

6.
J Pers Med ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35330428

RESUMO

(1) Background: Familial hypercholesterolemia (FH) is one of the most prevalent inherited metabolic disorders. The purpose of the study was to investigate the role in cardiovascular disease (CVD) of PAI-1, ACE, ApoB-100, MTHFR A1298C, and C677T. (2) Methods: From a group of 1499 patients, we included 52 patients diagnosed with FH phenotype and 17 patients in a control group. (3) Results: Most of the FH patients had multiple comorbidities compared to the control group, such as atherosclerosis (48.1% vs. 17.6%), atherosclerotic cardiovascular disease (ASCVD 32.7% vs. 11.8%), and metabolic syndrome (MetS, 40.4% vs. 11.8%). In total, 66.7% of the FH patients had PAI-1 4G/5G genotype and MetS. Between 4G/5G and 4G/4G, a statistically significant difference was observed (p = 0.013). FH patients with ApoB R3500Q polymorphism were correlated with ASCVD (p = 0.031). Both MTHFR C677T and A1298C polymorphisms had a significant correlation with gender, alcohol consumption, and smoking status. ACE polymorphism was associated with ATS in FH patients, statistically significant differences being observed between heterozygous and homozygous D genotype (p = 0.036) as well as between heterozygous and homozygous I genotype (p = 0.021). (4) Conclusions: A link between these polymorphisms was demonstrated in the FH group for ATS, ASCVD, and MetS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...